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Abstract. The hexagonal antiferromagnet, convenient for describing magnetic compounds of
the type BX2, where B is a magnetic ion and X a halogen, is characterized by having an in-
plane exchange interactionJ⊥ much stronger than the out-of-plane exchange interactionJ‖.
The interest in the class of BX2 compounds arises because they are expected to manifest some
features peculiar to the triangular antiferromagnets. In particular, we intend to investigate the
existence of possible planar phases supported by quantum fluctuations when an external magnetic
field is applied perpendicular to thec axis. We find that a planar phase is stable for sufficiently
small interplane coupling and small single-ion easy-axis anisotropy, whereas an umbrella phase
would be expected on the basis of the classical approximation.

1. Introduction

The behaviour of hexagonal antiferromagnets (HAF) in an external magnetic field is
currently being investigated, but many questions await an answer. The HAF model is
suitable for describing ABX3 and BX2 compounds where A is an alkali element, B a
magnetic ion and X a halogen [1]. The magnetic ions are localized on antiferromagnetic
chains along thec axis and form a triangular antiferromagnet (TAF) in thec plane. The basic
difference between ABX3 and BX2 compounds is in the value of the ratio betweenJ‖ (the
NN intrachain coupling) andJ⊥ (the NN interchain coupling). One hasJ‖ � J⊥ in ABX 3

and J‖ � J⊥ in BX2 compounds [2], so characteristic features of 1D antiferromagnetic
chains and of 2D triangular antiferromagnets may be found in ABX3 and BX2 compounds,
respectively. For instance, experimental support to the Haldane conjecture [3] was achieved
via inelastic neutron scattering from CsNiCl3, a member of the ABX3 family [4]. It is
worth noticing, however, that the experimental data on CsNiCl3 may also be understood
as due to anharmonic magnon–magnon interactions peculiar to non-collinear quasi-1D spin
systems [5]. An interesting debate is still open. In contrast, the peculiar phenomenology
of the TAF [6] model is expected to be observed for BX2 compounds when an external
magnetic field is applied in thec plane. We recall that quantum fluctuations stabilize a
planar configuration in the TAF model with the spins spiralling in a plane containing the
magnetic field even though anumbrellaconfiguration with its axis along the magnetic field
direction has the same energy as the planar configuration in the classical approximation
[7]. This interesting quantum effect is prevented in the ABX3 antiferromagnets because
of the strong intrachain couplingJ‖ that makes these compounds similar to independent
antiferromagnetic chains rather than to triangular antiferromagnets. The case of CsCuCl3 is
unique since the strong intrachain interaction is ferromagnetic, so any chain behaves like a
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single spin at low enough temperature. The TAF phenomenology was indeed experimentally
observed [8] and theoretically justified [9]. This possibility is prevented when the strong
intrachain coupling is antiferromagnetic—as is mostly the case for the ABX3 compounds.
In contrast, because of the strong interchain couplingJ⊥ and the small single-ion anisotropy,
the BX2 compounds are expected to behave like triangular antiferromagnets, since the small
intrachain couplingJ‖ makes these systems similar to a stacking of nearly independent
triangular antiferromagnets. Indeed the difference between the umbrella and the planar
configuration energies in the classical approximation is of order−J‖H 2. On the other hand
one expects to find that the difference between the zero-point-motion energy of the umbrella
and the planar configuration of the HAF is of order+J⊥H 2/S on the basis of what occurs
in the TAF model [7]. As a consequence we expect that the competition between classical
and quantum contributions to the ground-state energy will be found to play a significant
role in the BX2 family. Notice that the quantum effect decreases asS increases, but for
any reliable value ofS the quantum effect is far from being negligible for BX2 compounds
whereJ⊥ � J‖.

In this paper we investigate the possibility of planar spin configurations supported by
quantum fluctuations when an external magnetic field is applied in thec plane with and
without single-ion easy-axis anisotropy. The HAF model with small interlayer coupling and
small anisotropy is suitable for describing VBr2 (a BX2 compound withS = 3/2) for which
elastic neutron scattering data exist [2].

In section 2 we evaluate the minimum-energy configuration in the classical
approximation. In section 3 we evaluate the magnon frequencies and in section 4 the
zero-point-motion energy for the planar (P) and umbrella (U) configurations. In section 5
the consequence of quantum fluctuations for the Bragg peaks is considered in order to
compare our results with experiment. Section 6 is devoted to conclusions and comments.

Figure 1. The magnetic cell of the hexagonal antiferromagnet (HAF).
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2. The minimum-energy configuration in the classical approximation

The Hamiltonian model that we consider reads

H = J‖
∑
i,δ‖

Si · Si+δ‖ + J⊥
∑
i,δ⊥

Si · Si+δ⊥ − gµBH
∑

i

Sx
i + D

∑
i

(Sz
i )

2 (2.1)

whereJ‖ is the NN intrachain coupling,J⊥ is the NN interchain coupling,δ‖ is a vector
joining the sitei with its two out-of-plane NN at(0, 0, ±c) andδ⊥ is a vector joining the
site i with its six in-plane NN at(±a, 0, 0), (±a/2, ±√

3a/2, 0). g is the Land́e factor,
µB is the Bohr magneton,H is the external magnetic field applied along thex direction
andD < 0 is the single-ion easy-axis anisotropy. The magnetic cell of the HAF model is
shown in figure 1.

In the classical approximation the spins are represented by classical vectors of magnitude
S, so the energy of the model (2.1) is a function of the polar anglesθs and azimuthal angles
φs of the six spins of a unit cell, wheres = 1, 2, 3 labels the spins in a layer ands = 4, 5, 6
labels the spins in the adjacent layer. Spins labelled 1 and 4, 2 and 5, 3 and 6 are NN along
the c axis, respectively.

The reduced energy reads

e0 = E0

2J⊥NS2

= 1

2

[
sinθ1 sinθ2 cos(φ1 − φ2) + cosθ1 cosθ2

+ sinθ2 sinθ3 cos(φ2 − φ3) + cosθ2 cosθ3 + sinθ3 sinθ1 cos(φ3 − φ1)

+ cosθ3 cosθ1 + sinθ4 sinθ5 cos(φ4 − φ5) + cosθ4 cosθ5

+ sinθ5 sinθ6 cos(φ5 − φ6) + cosθ5 cosθ6 + sinθ6 sinθ4 cos(φ6 − φ4)

+ cosθ6 cosθ4
] + 1

3
j
[

sinθ1 sinθ4 cos(φ1 − φ4) + cosθ1 cosθ4

+ sinθ2 sinθ5 cos(φ2 − φ5) + cosθ2 cosθ5 + sinθ3 sinθ6 cos(φ3 − φ6)

+ cosθ3 cosθ6
] − 1

2
h
(

sinθ1 cosφ1 + sinθ2 cosφ2 + sinθ3 cosφ3

+ sinθ4 cosφ4 + sinθ5 cosφ5 + sinθ6 cosφ6
)

+1

6
d
(

cos2 θ1 + cos2 θ2 + cos2 θ3 + cos2 θ4 + cos2 θ5 + cos2 θ6
)

(2.2)

wherej = J‖/J⊥, h = gµBH/6J⊥S andd = D/2J⊥. Minimization of e0 with respect to
the twelve variablesθs , φs is performed numerically. We are interested in the limitj � 1,
suitable for BX2 compounds. The opposite limitj � 1, suitable for ABX3 compounds,
was studied in [10] where a single-ion easy-plane anisotropy was chosen. The minimum-
energy configurations that we find are two umbrella (U1, U2) and two planar (P, SF) spin
configurations as shown in figure 2. The umbrella configurations are stable for small single-
ion anisotropy.

The U1 configuration corresponds to a phase withθ1, θ2, θ3 = θ2, θ4 = π − θ1,
θ5 = θ6 = π − θ2, φ1 = φ4 = 0, φ2, φ3 = φ5 = −φ2, φ6 = φ2, whereθ1, θ2, φ2 are
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Figure 2. The zero-temperature phase diagram in theh, |d| plane forj = 0.01. U1, U2, P,
SF, and S mean the umbrellas of two kinds discussed in section 2, planar, spin-flop like, and
saturated phase. The inset illustrates the physical region of the phase diagram.

solutions of the equations

sinθ2 sinφ2

[
−

(
1 + 2

3
j

)
sinθ2 cosφ2 − 1

2
sinθ1 + 1

2
h

]
= 0

cosθ1

[
sinθ2 cosφ2 +

(
2

3
j − 1

3
d

)
sinθ1 − 1

2
h

]
= sinθ1 cosθ2

cosθ2

[
− sinθ2 sin2 φ2 + 1

2
sinθ1 cosφ2 + 2

3
j sinθ2 cos2 φ2

− 1

2
h cosφ2 − 1

3
d sinθ2

]
= 1

2
cosθ1 sinθ2.

(2.3)

For smallh andd we obtain

cosφ2 ' (1 + d/3)[4j/3 − d + 2d(2j − d)/9]

2(2j − d)
√

3/4 + 2d/3 + d2/9[1 + 2(2j + d)/9 + 4dj/27]
h

sinθ1 ' (1 + d/3)2j/3

(2j − d)[1 + 2(2j + d)/9 + 4dj/27]
h

cosθ2 = −1/2

1 + d/3
+ O(h2)

(2.4)

and

e
(U1)

0 ' −3/2 + d2/9

1 + d/3
− j − 1

2
h2 + 1

9
jh2 4j − 3d

2j − d
. (2.5)
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The U2 phase is characterized byθ1 = θ4 = π/2, θ2, θ3 = θ5 = π − θ2, θ6 = θ2, φ1,
φ2, φ3 = φ2, φ4 = −φ1, φ5 = φ6 = −φ2, whereφ1, φ2, θ2 are solutions of the equations

− sinθ2 sin(φ1 − φ2) − 1

3
j sin 2φ1 + 1

2
h sinφ1 = 0

sinθ2

[
1

2
sin(φ1 − φ2) − 1

3
j sinθ2 sin 2φ2 + 1

2
h sinφ2

]
= 0

cosθ2

[
1

2
cos(φ1 − φ2) + sinθ2 + 2

3
j sinθ2 cos2 φ2 − 1

2
h cosφ2 − 1

3
d sinθ2

]
= 0.

(2.6)

For smallh andd we obtain

cosφ1 ' (2j − d)(1 − d/3)

2j [1 + 2(1 − d/3)2 + 4(1 − d/3)j/3]
h

cosφ2 ' (1 − d/3)[d + 4j (1 − d/3)]

2j [1 + 2(1 − d/3)2 + 4(1 − d/3)j/3]
h

sinθ2 = 1/2

1 − d/3
+ O(h2)

(2.7)

and

e
(U2)

0 ' −3/2 + 3d/2 − 5d2/9 + 2d3/27

(1 − d/3)2
− j − 1

2
h2 + 2

9
jh2

(
1 + d

4j

) (
1 − d

2j

)
.

(2.8)

Note that both U1 and U2 phases have been found in ABX3 compounds [10, 11].
The P phase is characterized byθ1, θ2, θ3, θ4 = π − θ1, θ5 = π − θ3, θ6 = π − θ2,

φ1 = φ2 = φ4 = φ6 = 0, φ3 = φ5 = π , whereθ1, θ2, θ3 are solutions of the equations

cosθ1

[
sinθ2 − sinθ3 +

(
4

3
j − 2

3
d

)
sinθ1 − h

]
= sinθ1 (cosθ2 + cosθ3)

cosθ2

(
sinθ1 − sinθ3 − 2

3
j sinθ3 − h − 2

3
d sinθ2

)
= sinθ2

[
cosθ1 +

(
1 − 2

3
j

)
cosθ3

]
− cosθ3

(
sinθ1 + sinθ2 + 2

3
j sinθ2 − h + 2

3
d sinθ3

)
= sinθ3

[
cosθ1 +

(
1 − 2

3
j

)
cosθ2

]
.

(2.9)

For smallh andd we obtain

sinθ1 ' 2 − 8(2j + d)(1 + d/3)2/3 − 2(1 − d/3)

2 − [8(2j + d)(1 + d/3)2/3 + 2(1 − d/3)][4j/3 − 2d/3 + (1 + d/3)−1]
h

sinθ2 '
√

1 − [2(1 + d/3)]−2

+ 1 − [4j/3 − 2d/3 + (1 + d/3)−1]

2 − [8(2j + d)(1 + d/3)2/3 + 2(1 − d/3)][4j/3 − 2d/3 + (1 + d/3)−1]
h

sinθ3 '
√

1 − [2(1 + d/3)]−2

− 1 − [4j/3 − 2d/3 + (1 + d/3)−1]

2 − [8(2j + d)(1 + d/3)2/3 + 2(1 − d/3)][4j/3 − 2d/3 + (1 + d/3)−1]
h

(2.10)
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and

e
(P)

0 ' −3/2 + d2/9

1 + d/3
− j − 1

2
h2 + 4

9
jh2

(
1 − 3d

4j

) (
1 + 3d

8j

)
. (2.11)

The planar spin-flop-like SF phase is characterized byφs = 0 for s = 1, . . . , 6,
θ1 = θ4 = π/2, θ3 = θ5 = π − θ2, θ6 = θ2 with

θ2 = sin−1 (h − 1)/2

1 + 2j/3 − d/3
(2.12)

e
(SF)
0 = −1 − j/3 + 2d/3 − h − (h − 1)2

2(1 + 2j/3 − d/3)
. (2.13)

The saturated (S) phase corresponds toφs = 0, θs = π/2 for s = 1, . . . , 6,
e
(S)

0 = 3 + j − 3h. The S phase is stable forh > hs = 3 + 2(2j − d)/3.
In figure 2 we show the zero-temperature phase diagram for the model (2.1) in theh, |d|

plane forj = 0.01, a typical value of exchange coupling for BX2 compounds [2]. Note
that the actual magnetic fields are restricted to the region of smallh, sayh < 0.1; indeed
h = 0.1 corresponds toH = 10 T for J⊥ of the order of 20 K [2]. In this region of low
magnetic field only U1, U2, and P phases are found, as shown by the inset of figure 2.
The classical phase boundaries obtained by comparing the energies of the various phases
are listed below.

(i) The U1–P phase boundary is

|d| = 2j.

(ii) The U1–U2 phase boundary is

h ' 2
√

j (2j − d)/3.

(iii) The U2–P phase boundary is

h ' |d|
√

|d|/[6j (1 + |d|/2j − 7d2/16j2)].

(All of these phase transitions are first order—as is the P–SF one which occurs ath ' 1.1.
The remaining two phase transitions are second order.)

(iv) The U2–SF phase boundary is

h = 1 + 2(1 + 2j/3 − d/3)(1 + d/4j − d/3)

(1 − d/3)(1 − d/2j)
.

(v) The SF–S phase boundary is

h = 3 + 2(2j + |d|)/3.

Note that the parameters suitable for VBr2 [2] (j = 0.01, d = −0.003, 0< h < 0.015)
imply that the stable phase is the U1 phase. A transition to the U2 phase should be expected
at a field of the order of 2 T. However, this classical scenario is dramatically changed by
quantum fluctuations as we will show in section 4.

For the isotropic Heisenberg hexagonal antiferromagnet (d = 0) one has that the two
phases U1 and U2 reduce to a regular umbrella phase where the spins are spiralling on the
surface of a cone with its axis along the field direction, apex angleθ = cos−1 ((3h/(9 + 4j)),
and energye(U)

0 = − 3
2 − j − 9h2(2(9 + 4j)). The P and SF phases reduce to the phases

7 and 5C of [12], respectively. For vanishing magnetic field the energy of the P phase is
e
(P)

0 = − 3
2 −j −9h2/(2(9 + 8j)). Note that the planar model studied in [12] does not have a

quantum counterpart, so the effect of quantum fluctuations—that is the target of the present
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Table 1. Comparison of the classical energies of the U (e
(U)
0 ), P (e(P)

0 ) and SF phases (e
(SF)
0 ) as

functions of the external magnetic field forj = 0.01.

h e
(U)
0 e

(P)
0 e

(SF)
0

0 −1.510 000 −1.510 000
0.1 −1.514 978 −1.514 956
0.2 −1.529 912 −1.529 823
0.3 −1.554 801 −1.554 600
0.4 −1.589 646 −1.589 282
0.5 −1.634 447 −1.633 867
0.6 −1.689 204 −1.688 345
0.7 −1.753 916 −1.752 708
0.8 −1.828 584 −1.826 944
0.9 −1.913 208 −1.911 050
1.0 −2.007 788 −2.005 066 −2.003 333
1.1 −2.112 323 −2.109 098 −2.108 300
1.2 −2.226 814 −2.223 228 −2.223 201
1.3 −2.351 261 −2.347 475 −2.348 035
1.4 −2.485 664 −2.481 832 −2.482 804
1.5 −2.630 022 −2.626 283 −2.627 506
1.6 −2.784 336 −2.780 814 −2.782 141
1.7 −2.948 606 −2.946 711 −2.945 411
1.8 −3.122 832 −3.120 062 −3.121 214
1.9 −3.307 013 −3.304 759 −3.305 651
2.0 −3.501 150 −3.499 393 −3.500 022
2.5 −4.621 173 −4.620 822 −4.649 670
2.6 −4.875 044 −4.874 826 −4.874 857
2.7 −5.138 872 −5.138 751 −5.138 764
2.8 −5.412 655 −5.412 601 −5.412 605
2.9 −5.696 394 −5.696 379 −5.696 380
3.0 −5.990 0885 −5.990 0883 −5.990 0883
3.013 33 −6.030 000 −6.030 000 −6.030 000

work—is beyond that model. Moreover, the planar phases 7, 5C are at most metastable
phases for the isotropic classical Heisenberg model for which the absolute minimum of
energy is achieved by the umbrella phase.

As one can see from table 1, where the classical energies of the U, P and SF phases of
the isotropic model withj = 0.01 are compared for different magnetic fields, the U phase
is stable with respect to the P phase for any magnetic field. Obviously the U and P phases
coincide ath = 0 and at the saturation fieldh = hs = 3.013 33. The P phase coincides
with the phase 7 of [12] forh < 1.895. At h = 1.895 the phase 7 becomes the phase 5A
of [12]. The phase 5C (SF) is stable with respect to the phase 7 (P) forh > 1.203. In any
case the absolute minimum corresponds to the U phase.

3. Magnon frequencies

In order to find the spin-wave frequencies a generalization of the customary approach is
used. Six transformations from the crystal axis to the local axis are introduced: S

(s)
i,x

S
(s)
i,y

S
(s)
i,z

 =
( cosθs cosφs − sinφs sinθs cosφs

cosθs sinφs cosφs sinθs sinφs

− sinθs 0 cosθs

)  S
(s)
i,ξ

S
(s)
i,η

S
(s)
i,ζ

 (3.1)



1818 E Rastelli and A Tassi

with s = 1, . . . , 6 running over the six sublattices of the HAF model. Then the harmonic
boson equivalent Hamiltonian is obtained by the linearized spin-boson transformation:

S
(s)
i,ξ '

√
2S(a

(s)
i + a

(s)†
i )/2

S
(s)
i,η '

√
2S(a

(s)†
i − a

(s)
i )/2i

S
(s)
i,ζ = S − a

(s)†
i a

(s)
i .

(3.2)

Finally the spatial Fourier transform of the localized spin deviation operators is performed:

a
(s)
i =

√
6/N

∑
i

eik·ri a
(s)

k . (3.3)

Substitution of (3.1)–(3.3) in Hamiltonian (2.1) gives

H = E0(θs, φs) + 1

6
DSN

6∑
s=1

cos2 θs − 1

12
gµBHN

6∑
s=1

cosθs sinθs

+J⊥SN
(
r12 + r23 + r31 + r45 + r56 + r64

) + 2

3
J‖SN

(
r14 + r25 + r36

)
+

∑
k

(
A†

k, A−k

) (
H(k) M∗(−k)

M(k) H∗(−k)

) (
Ak

A†
−k

)
(3.4)

whereE0(θs, φs) is given by (2.2), and the column matrix of boson operatorsAk and the
matrix elements ofH(k) andM(k) in (3.4) are given in appendix A. Therss ′ are given by
(A.36).

Figure 3. Magnon frequencies for the U1 phase alongqz (0,0,ζ ) andqx (ξ, ξ , 0) for h = 0.

Introducing the following Bogoliubov transformation:

α
(s)

k =
6∑

r=1

(
u

(s,r)

k a
(r)

k − v
(s,r)

k a
(r)†
−k

)
(3.5)
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Figure 4. Magnon frequencies for the U2 phase alongqz (0,0,ζ ) andqx (ξ, ξ , 0) for h = 0.1.

with s = 1, . . . , 6, Hamiltonian (3.4) becomes

H = E0(θs, φs) + 1

6
DSN

6∑
s=1

cos2 θs − 1

12
gµBHN

6∑
s=1

cosθs sinθs

+J⊥SN
(
r12 + r23 + r31 + r45 + r56 + r64

) + 2

3
J‖SN

(
r14 + r25 + r36

)
+

∑
k

6∑
s=1

1

2
h̄ω

(s)

k +
∑

k

6∑
s=1

h̄ω
(s)

k α
(s)†
k α

(s)

k (3.6)

whereh̄ω
(s)

k are solutions of the following determinantal equation obtained via the equation
of motion for theα

(s)

k -operators:

det

(
H∗(k) − 1

2h̄ω
(s)

k 1 M(−k)

−M∗(k) −H(−k) − 1
2h̄ω

(s)

k 1

)
= 0. (3.7)

Note that in (3.6) the first term is the classical energy, the next five terms are the zero-point-
motion energy and the last one is the harmonic Hamiltonian diagonal in the new boson
operators. In figures 3 and 4 we give the spin-wave dispersion relations forj = 0.01,
d = −0.003, h = 0 and h = 0.1, respectively. The uniform modes are expected at 0,
0.0017, 0.683, 1.752, 1.882, 2.481 meV forh = 0, and at 0.0093, 0.043, 1.298, 1.414,
2.479, 2.539 meV forh = 0.1 (corresponding toH = 10 T), respectively.

4. Zero-point-motion energy of the isotropic model

Owing to the small value of the single-ion anisotropy [2] we can evaluate the zero-point-
motion energy in the isotropic limit (d = 0). In this case we obtain much simpler expressions
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for the U phase where the spins are regularly spiralling on the surface of a cone, so the
standard approach for treating regular helices can be applied. Transformation (3.1) can be
used changingφs into Q · ri andθs into the apex angle of the coneθ . In this way we have
only one kind of operator instead of six and we obtain

H = E0(θ, Q) +
∑

k

Aka
†
kak + 1

2

∑
k

Bk

(
aka−k + a

†
ka

†
−k

)
(4.1)

where

E0(θ, Q) = −
∑
δ⊥

J⊥S2N
(
sin2 θ cosQ · δ⊥ + cos2 θ

)
−

∑
δ‖

J‖S2N
(
sin2 θ cosQ · δ‖ + cos2 θ

) − gµBHSN cosθ (4.2)

Ak = A
(1)

k (θ, Q) + A
(2)

k (θ, Q) (4.3)

with

A
(1)

k (θ, Q) = −2S
{

cos2 θ
[
J (0) − J (Q)

] + J (Q) − 1
2

[
J (k + Q) + J (k − Q)

]
− 1

2 sin2 θ
[
J (k) − 1

2(J (k + Q) + J (k − Q))
]} + gµBH cosθ (4.4)

A
(2)

k (θ, Q) = −S cosθ
[
J (k − Q) − J (k + Q)

]
(4.5)

Bk = S sin2 θ
[
J (k) − 1

2(J (k + Q) + J (k − Q))
]

(4.6)

J (Q) = 2J⊥
[

cos(aQx) + 2 cos(aQx/2) cos(
√

3aQy/2) + j cos(cQz)
]
. (4.7)

Minimization with respect toθ andQ gives the apex angle

θ = cos−1 gµBH

2S[J (Q) − J (0)]

and the helix wave vectorQ = (4π/(3a), 0, π/c). The usual Bogoliubov transformation
can be used to give

H = E0 + 1E +
∑

k

h̄ωkα
†
kαk (4.8)

where

1E = − 1
2

∑
k

A
(1)

k + 1
2

∑
k

√
A

(1)2
k − B2

k (4.9)

is the zero-point-motion energy. The magnon energy is

h̄ωk =
√

A
(1)2
k − B2

k + A
(2)

k . (4.10)

Note thath̄ωk is different fromh̄ω−k. The reduced ground-state energy

e
(U)
G = (E0 + 1E)/(2J⊥NS2)

is given by

e
(U)
G = −3

2
− h2

2

1

1 + 4j/9
− j − 1

S

(
3

2
+ j

)
+ 1

2S
1(U)(h, j) (4.11)

where

1(U)(h, j) = 1

π3

∫ π

0
dx

∫ π

0
dy

∫ π

0
dz

√
s(x, y, z)d(x, y, z) (4.12)
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with

s(x, y, z) = 3 + 2 cos(2x) + 4 cosx cosy + 2j (1 + cosz)

− 9h2

(9 + 4j)2
[3 cos(2x) + 6 cosx cosy + 4j cosz] (4.13)

d(x, y, z) = 3 − cos(2x) − 2 cosx cosy + 2j (1 − cosz). (4.14)

In the limit of vanishingj the reduced ground-state energy is

e
(U)
G (j → 0) = −3

2
− 1

2
h2 − j

(
1 − 2

9
h2

)
− 3

2S
+ 1

2S
1(U)(h, 0). (4.15)

This expansion is justified by the small value ofj suitable for BX2 compounds [2] and it
is useful in view of the comparison we will make with a similar expansion for the planar
configuration.

The planar phase P does not correspond to a regular helix, so the formulae of section 3
should have been used. However, the P configuration for vanishing anisotropy corresponds
to a secondary minimum of the classical energy, since the absolute minimum corresponds to
a U configuration. For this reason the elementary excitation energies are not well defined.
Indeed we have found imaginary frequencies in a narrow region around the centre of the
Brillouin zone. We stress that this drawback is not peculiar to the model that we consider
but is common for all isotropic Heisenberg models since the elementary excitation energies
are well defined only for the absolute minimum of the classical energy. This limitation is
obviously unphysical and it is related to the customary expansion in 1/S. We overcome this
problem by taking advantage of the smallness of the interlayer coupling. In this limit we
may consider the HAF model as a stacking of TAF layers in each of which the elementary
excitations are well defined in an infinity of inequivalent configurations that are isoenergetic
in the classical approximation [7]. It is well known that the zero-point motion selects a
single configuration where, for smallh, one spin over three is antiparallel to the field. On
the other hand the energy contribution from the interlayer coupling that we take into account
in the classical approximation is minimized by a configuration where a spin in a layer makes
an angleφ with the external magnetic field and its NN spins in the adjacent layers make
an angle−φ with respect to the field. The reduced classical energy reads

e
(P)

0 = −3

2
− 1

2
h2 + je0(h, φ) (4.16)

where

e0(h, φ) = 1

3

(
2 cos2 φ + 1 − 4 sin2 φ

1 + h2 − 2h cosφ

)
. (4.17)

The value ofφ is arbitrary owing to the degeneracy of the classical minimum-energy
configuration of the TAF model [6]. The spin configuration for the six sublattices of the
HAF model is

φ1 = φ
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cosφ2 = 1

2

h − cosφ − sinφ

√
3 − h2 + 2h cosφ

1 + h2 − 2h cosφ


sinφ2 = −1

2

sinφ + (h − cosφ)

√
3 − h2 + 2h cosφ

1 + h2 − 2h cosφ


cosφ3 = 1

2

h − cosφ + sinφ

√
3 − h2 + 2h cosφ

1 + h2 − 2h cosφ


sinφ2 = −1

2

sinφ − (h − cosφ)

√
3 − h2 + 2h cosφ

1 + h2 − 2h cosφ


φ4 = −φ φ5 = −φ3 φ6 = −φ2.

(4.18)

Note that in the absence of anisotropy the spins lie in an arbitrary plane containing the
magnetic field. The reduced ground-state energy reads

e
(P)
G = e

(P)

0 − 3

2S
+ 1

2S
1(P)(h, φ) (4.19)

where [13]

1(P)(h, φ) = 1

π2

∫ π

0
dx

∫ π

0
dy

3∑
s=1

√
λ(s)(x, y). (4.20)

The λ(s) with s = 1, 2, 3 are the roots of the equation

λ3 − (
3 + 2s1|γ |2)λ2 + [

3 − (3 + s2 − s1)|γ |2 + s2
1|γ |4 − (s2

1 − s2 + 2s1)
(
γ 3 + γ ∗3

)
/2

]
λ

−[
1 − s2|γ |2 + (s2 − 1)

(
γ 3 + γ ∗3

)
/2

][
1 − 3|γ |2 + γ 3 + γ ∗3

]
= 0 (4.21)

with

γ = 1

3

(
e

2
3 ix + 2e− 1

3 ix cosy
)

(4.22)

s1 = −3

2
+ 1

2
h2 s2 = 1

4

[
3 + h2ρ(h, φ)

]
(4.23)

ρ(h, φ) = 4 − 4h cosφ(4 cos2 φ − 1) + h2(16 cos2 φ − 3) − 6h3 cosφ + h4

1 − 2h cosφ + h2
(4.24)

where 0< φ < π for 0 < h < 1 and 0< φ < φM = cos−1((h2 − 3)/2h) for 1 < h < 3.
Note thate(P)

0 is minimum forφ = φm given by the real solution of the equation

4h2 cos3 φm − 2h(3 + 2h2) cos2 φm + (3 + 4h2 + h4) cosφm − 2h = 0. (4.25)

In the limit of smallh one has

cosφm = 2

3
h − 2

81
h5 + · · · . (4.26)

In contrast1(P)(h, φ) is minimized by

φ = φ0 = cos−1

(
1 + h

2

)
and φ = π
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for 0 < h < 1 and by

φ = φ0 = cos−1

(
h2 + 3

4h

)
and φ = φM

for 1 < h < 3. Note that the configurations corresponding to the two minima of1(P)(h, φ)

are equivalent in the 2D TAF model but not equivalent in the 3D HAF model, where they
lead to a different interlayer energy contributione0(h, φ).

Figure 5. (a) 1(P)(h = 0.1, φ) given by equation (4.20), (b)e0(h = 0.1, φ) given by
equation (4.17), and (c)e(P)

G given by equation (4.19) forS = 3/2, j = 0.01.

In figure 5 we show: (a)1(P)(h, φ) given by equation (4.20); (b)e0(h, φ) given by
equation (4.17); and (c)e(P)

G given by equation (4.19) forj = 0.01, S = 3/2 andh = 0.1
as functions ofφ. As one can see, the valueφ = 1.5029 at whiche

(P)
G is a minimum is

very close toφm = 1.5041 at whiche0(0.1, φ) is a minimum. Note that the minima of
1(P)(0.1, φ) occur atφ = φ0 = 0.9884 andφ = π .

Figure 6. (a) 1(P)(h = 0.9, φ), (b) e0(h = 0.9, φ), and (c)e(P)
G for S = 3/2, j = 0.01.

In figure 6 we show the same quantities forh = 0.9. The minima of1(P)(0.9, φ)

occur atφ = φ0 = 0.3176 andφ = π . The minima ofe0(0.9, φ) and e
(P)
G occur at
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φ = φm = 1.0141 andφ = 0.3604, respectively. The zero-point-motion energy becomes
crucial in selecting the spin configuration.

Figure 7. (a) 1(P)(h = 1.357 53, φ), (b) e0(h = 1.357 53, φ), and (c) e
(P)
G for S = 3/2,

j = 0.01.

In figure 7 we show a first-order phase transition between two planar spin configurations
characterized byφ = 0.5296 andφM = 2.0111, respectively. The magnetic field at which
the first-order phase transition occurs ish = 1.357 53. Note that the minima ofe(P)

G are
very near to those of1(P)(1.357 53, φ) occurring atφ0 = 0.4694 andφ = φM while the
minimum of e0(1.35753, φ) occurs atφm = 1.2619. For increasing field the scenario is
confirmed and the spin configuration is selected by quantum fluctuations. The minimum of
e
(P)
G locks atφ = φM .

In table 2 we give e
(U)
G defined by equation (4.11),e(U)

G (j → 0) defined by
equation (4.15) ande(P)

G defined by equation (4.19) evaluated for the value ofφ for which
e
(P)
G is a minimum. We have evaluated the second column of values to allow a homogeneous

comparison between the ground-state energies of the U and P phases since the zero-point-
motion energy for the P phase can be evaluated only in the limit wherej = 0. As one can
see by comparison of the second and third columns of table 2, the P phase replaces the U
phase for any value ofh. The comparison of the first and third columns leads one to the
same conclusion but it is less reliable because the P phase would get an advantage from the
2D calculation as shown by the first row of table 2. Indeed the zero-point-motion energy
lowers the ground-state energy as the number of dimensions decreases.

For compounds like VBr2 and VCl2 the realistic values ofh are in the range 0< h < 0.1
corresponding to fields 0< H < 10 T, so the significant figure is figure 5. In this range one
can perform an expansion of1(P)(h, φ) given by equation (4.20) in powers ofh, obtaining

1(P)(h, φ) = c0 + c
(P)

2 h2 + c
(P)

3 h3 cos(3φ) + · · · (4.27)

wherec0 = 2.344 764,c(P)

2 = 0.142, c(P)

3 = 0.053. The ground-state energye(P)
G given in

equation (4.19) evaluated forφ = φm (see equation (4.26)) reads

e
(P)
G (φm) = −3

2
− 1

2
h2 − j

(
1 − 4

9
h2 − 4

81
h4 + · · ·

)
− 3

2S
+ 1

2S

(
c0 + c

(P)

2 h2 − 2c
(P)

3 h4 + · · ·
)

. (4.28)
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Table 2. A comparison of the quantum energies of the U phase (e
(U)
G ), the U phase expanded

for small j (e(U)
G (j → 0)) and the P phase (e

(P)
G ) as functions of the external magnetic field for

j = 0.01.

h e
(U)
G e

(U)
G (j → 0) e

(P)
G

0 −1.725 415 −1.728 412 −1.728 412
0.1 −1.729 735 −1.732 672 −1.732 918
0.2 −1.742 752 −1.745 562 −1.746 501
0.3 −1.764 581 −1.767 238 −1.769 306
0.4 −1.795 343 −1.797 836 −1.801 502
0.5 −1.835 154 −1.837 478 −1.843 359
0.6 −1.884 122 −1.886 276 −1.895 276
0.7 −1.942 344 −1.944 329 −1.957 692
0.8 −2.009 910 −2.011 728 −2.031 018
0.9 −2.086 901 −2.088 554 −2.115 766
1.0 −2.173 393 −2.174 883 −2.213 143
1.1 −2.269 452 −2.270 783 −2.302 577
1.2 −2.375 142 −2.376 319 −2.402 957
1.3 −2.490 523 −2.491 549 −2.513 865
1.4 −2.615 649 −2.616 527 −2.635 967
1.5 −2.750 573 −2.751 308 −2.769 100
1.6 −2.895 344 −2.895 940 −2.912 060
1.7 −3.050 010 −3.050 472 −3.064 927
1.8 −3.214 621 −3.214 952 −3.227 772
1.9 −3.389 222 −3.389 427 −3.400 660
2.0 −3.573 863 −3.573 948 −3.583 652
2.5 −4.649 670 −4.649 258 −4.652 512
2.6 −4.895 881 −4.895 402 −4.897 667
2.7 −5.152 714 −5.152 190 −5.153 597
2.8 −5.420 382 −5.419 849 −5.420 555
2.9 −5.699 250 −5.698 776 −5.698 983
3.0 −5.990 162 −5.990 000 −5.990 000
3.013 33 −6.030 000 — —

In the same range of parameters the ground-state energy of the U phase given by
equation (4.15) reads

e
(U)
G (j → 0) = −3

2
− 1

2
h2 − j

(
1 − 2

9
h2

)
− 3

2S
+ 1

2S

(
c0 + c

(U)

2 h2 − c
(U)

3 h3 + . . .
)

(4.29)

wherec0 = 2.344 764,c(U)

2 = 0.224, c(U)

3 = 0.092. This allows us to show analytically the
stability of the P phase. Indeed one has

1eG = e
(U)
G (j → 0) − e

(P)
G (φm) =

[
−2

9
j + c

(U)

2 − c
(P)

2

2S

]
h2. (4.30)

For j = 0.01 andS = 3/2 we obtain1eG = 0.0251h2.
The small uniaxial anisotropy that one observes in VBr2 [2] does not change the above

conclusion but it selects the plane of the spins which is forced to contain both thec axis and
the external magnetic field. Taking advantage of the small value of the single-ion anisotropy
one can keep the zero-point-motion energy of the isotropic model and investigate its effect
on the classical energies expanded for smallh andd as given in equations (2.5) and (2.8).
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We have

1e1 = e
(U1)

0 − e
(P)

0 + 1(U) − 1(P)

2S
=

[
−2j (2j − |d|)

9(2j + |d|)
(

1 + 3|d|
4j

)2

+ 0.041

S

]
h2 (4.31)

and

1e2 = e
(U2)

0 − e
(P)

0 + 1(U) − 1(P)

2S
= |d|3

3(9 − d2)
+

[
−2

9
j

(
1 + |d|

2j
− 7d2

16j2

)
+ 0.041

S

]
h2.

(4.32)

For S = 3/2, |d| = 0.003, j = 0.01 we obtain1e1 ' 1e2 ' 0.0249h2 in good agreement
with the result of equation (4.30). We stress the crucial role of quantum fluctuations in
stabilizing the P phase.

The zero-point motion and spin reduction for some BX2 compounds with uniaxial
anisotropy were recently evaluated in zero field [14] by an approach very similar to ours.

Table 3. Bragg peak intensities for the U phase and the P phase at low magnetic field. Note
that for BX2 one hasj ' 0.01, h ' 0.01H (T). R = 1/(1 + (3a/4c)2) = 0.829 fora = 3.75 Å
andc = 6.20 Å.

U phase P phase

I (0,0,1) 9h2

(9 + 4j)2
9h2

(9 + 8j)2

I ( 1
3 , 1

3 , 1
2) 1 + R

4

[
1 − 9h2

(9 + 4j)2

]
1
4

[
1 − 16jh2

(9 + 8j)2

]
− R

(9 − 8j)h2

(9 + 8j)2

I ( 1
3 , 1

3 , 0) 0 9h2

4(9 + 8j)2

I (0, 0, 1
2) 0 0

5. The elastic neutron scattering cross section

Elastic neutron scattering experiments provide a suitable test for investigating whether the
spin configuration is a U or a Pconfiguration. By use of equation (3.1) of [10] we are able to
give the intensity of the main Bragg peaks for the U and P configuration. In order to compare
our theoretical results with the experimental data on elastic neutron scattering by VBr2 [2],
we consider the magnetic field along(1, 1̄, 0)—that is, oury axis. In table 3 we give the
intensities of some Bragg peaks for a single-crystal monodomain spin configuration in the
limit of small h (h ' 0.01H (T) for BX2). As one can see, the main difference between the
U and P phases is seen by looking at the intensity of the peak at (1

3, 1
3, 0), which is zero in

the U phase and proportional to the square of the magnetic field in the P phase. However,
the sample of VBr2 [2] was a single crystal with a multidomain magnetic configuration, so
the Bragg peak intensities are to be compared with a suitable average over the magnetic
domain distribution. A 120◦ three-sublattice spin pattern with the spins lying in planes
containing thec axis, and with the uniform distribution of the magnetic domains around
the c axis, fits the experimental data satisfactorily as shown in figure 5 of [2]. Under this
hypothesis, the Bragg peak intensity at zero field, form, n integers that are not multiples
of 3 and 2, respectively, reads

I
(m

3
,
m

3
,
n

2

)
= 1

4

(
1 + 1

2
Rm,n

)
(5.1)
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where

Rm,n = 1

1 + (3na/4mc)2 (5.2)

with a = 3.75 Å and c = 6.20 Å.
The application of an external magnetic field perpendicular to thec axis drives the

system towards a homogeneous magnetic configuration. In the experiment [2] a magnetic
field of up to 1.5 T was applied. The intensity of the Bragg peaks diminished with increasing
field. This suggests that the system is driven towards a homogeneous configuration where
the spins lie in a plane containing thec axis and the magnetic field (ouryz plane). Indeed
the intensity of the peaks (5.1) when an external magnetic field is applied along they axis, is

I
(m

3
,
m

3
,
n

2

)
= 1

4
(5.3)

when the spins lie in a plane containing thec axis and the magnetic field. Note that this
configuration is a P configuration. When the spins lie in the plane containing thec axis
perpendicular to the field direction (thexz plane)—that is, a U configuration—the Bragg
peak intensity reads

I
(m

3
,
m

3
,
n

2

)
= 1

4

(
1 + Rm,n

)
. (5.4)

The decrease of the peak intensities observed experimentally (see figure 2 of [2]) when
the multidomain configuration is still present suggests an evolution of the spin structure
towards a planar homogeneous spin configuration for which the peak intensities are given
by (5.3), whereas an umbrella configuration would produce an enhanced intensity as given
by (5.4). We suggest that elastic neutron scattering in a higher magnetic field would
unambiguously test our theoretical expectation of a planar spin configuration supported by
quantum fluctuations. Note that for a homogeneous spin configuration the field dependence
of the peak intensity would beh2 like. Indeed the observedh-dependence is due to an
extrinsic phenomenon such as the domain rotation [2]. Moreover the presence of a Bragg
peak at( 1

3, 1
3, 0) is the signature of the P phase once a homogeneous magnetic configuration

is obtained in a high enough magnetic field.

6. Summary and conclusions

In this paper we have studied the quantum fluctuations in the hexagonal antiferromagnet
(HAF) in the limit of small interplane coupling and small single-ion easy-axis anisotropy,
a model which is suitable for BX2 compounds. The phase diagram in the classical
approximation was obtained in section 2 and shown in figure 2 for an external magnetic field
applied perpendicular to thec axis. We have found that quantum fluctuations play a crucial
role. Indeed the minimum-energy spin configuration expected on the basis of the classical
approximation ford = 0 is an umbrella (U) phase with its axis parallel to the magnetic
field direction, but the zero-point-motion energy stabilizes a planar (P) configuration with
the spins lying in a plane containing the magnetic field. This is shown in tables 1 and 2 for
a set of Hamiltonian parameters suitable for some vanadium halides like VBr2 and VCl2
[2]. The scenario is reminiscent of the interesting phenomenology found in the isotropic
triangular antiferromagnet (TAF) where the umbrella configuration has the same energy as
infinite inequivalent planar configurations, when the classical approximation is used. In the
isotropic TAF model, quantum fluctuations stabilize a planar spin configuration with one
spin over three opposite to the field [7]. Even if a small single-ion easy-axis anisotropy
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is present the minimum of the classical energy of the HAF model corresponds to the U
phase, but a quasi-degeneracy with a P configuration survives, so the zero-point motion is
crucial to the selection of the ground-state configuration. Indeed the difference between the
classical energies of the U and P phases is of order−J‖H 2 whereas the difference between
the zero-point-motion energies of the U and P phases is of order+J⊥H 2/S, as was shown
in section 4. BX2 compounds are systems where the phenomenology that we have studied
may be tested. This possibility is obviously excluded for ABX3 compounds characterized
by a strong intrachain antiferromagnetic coupling.

In order to evaluate the zero-point-motion energy in section 3 we have studied the
magnon spectrum energy of the HAF model. In section 4 we have studied the influence of
quantum fluctuations on the ground state of the HAF model forj = 0.01 andd = −0.003,
typical values for VBr2 and VCl2 [2]. We have found that the planar phase is stabilized by
the zero-point motion for any external magnetic field up to the saturation magnetic field.

In section 5 we gave the elastic neutron scattering cross section (see table 3). We have
found that the measurement of the intensity of the Bragg peak at (1

3, 1
3, 0) could be a good

test to establish whether the spin configuration is U or P like. IndeedI ( 1
3, 1

3, 0) is zero in the
former case, and proportional to the square of the field in the latter. We have re-examined
the experimental data on the elastic neutron scattering from a single crystal of VBr2 with
a multidomain spin configuration [2] and we find that our expectation of a P phase in an
external magnetic field supported by quantum fluctuations agrees with experiment.

Appendix A

In equation (3.4) the column matrix of boson operatorsAk is given by

Ak =



a
(1)

k

a
(2)

k

a
(3)

k

a
(4)

k

a
(5)

k

a
(6)

k


. (A.1)

The matrices appearing in (3.4) are given by

H(k) =


H11 H12(k) H13(k) H14(k) 0 0

H ∗
12(k) H22 H23(k) 0 H25(k) 0

H ∗
13(k) H ∗

23(k) H33 0 0 H36(k)

H ∗
14(k) 0 0 H44 H45(k) H46(k)

0 H ∗
25(k) 0 H ∗

45(k) H55 H56(k)

0 0 H ∗
36(k) H ∗

46(k) H ∗
56(k) H66

 (A.2)

(A.3)

M(k) =


M11 M12(k) M13(k) M14(k) 0 0

M12(−k) M22 M23(k) 0 M25(k) 0
M13(−k) M23(−k) M33 0 0 M36(k)

M14(−k) 0 0 M44 M45(k) M46(k)

0 M25(−k) 0 M45(−k) M55 M56(k)

0 0 M36(−k) M46(−k) M56(−k) M66

 . (A.4)

The matrix elements of (A.2) are

H11 = 1

2
gµBH sinθ1 cosφ1 + 1

2
DS

(
1 − 3 cos2 θ1) − 3J⊥S

(
r12 + r31

) − 2J‖Sr14 (A.5)
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H12(k) = 3J⊥S
1

2
h∗

12γk (A.6)

H13(k) = 3J⊥S
1

2
h31γ

∗
k (A.7)

H14(k) = 2J‖S
1

2
h∗

14 cos(ckz) (A.8)

H22 = 1

2
gµBH sinθ2 cosφ2 + 1

2
DS

(
1 − 3 cos2 θ2) − 3J⊥S

(
r23 + r12

) − 2J‖Sr25 (A.9)

H23(k) = 3J⊥S
1

2
h∗

23γk (A.10)

H25(k) = 2J‖S
1

2
h∗

25 cos(ckz) (A.11)

H33 = 1

2
gµBH sinθ3 cosφ3 + 1

2
DS

(
1 − 3 cos2 θ3) − 3J⊥S

(
r31 + r23

) − 2J‖Sr36 (A.12)

H36(k) = 2J‖S
1

2
h∗

36 cos(ckz) (A.13)

H44 = 1

2
gµBH sinθ4 cosφ4 + 1

2
DS

(
1 − 3 cos2 θ4) − 3J⊥S

(
r45 + r64

) − 2J‖Sr14 (A.14)

H45(k) = 3J⊥S
1

2
h∗

45γk (A.15)

H46(k) = 3J⊥S
1

2
h64γ

∗
k (A.16)

H55 = 1

2
gµBH sinθ5 cosφ5 + 1

2
DS

(
1 − 3 cos2 θ5) − 3J⊥S

(
r56 + r45

) − 2J‖Sr25 (A.17)

H56(k) = 3J⊥S
1

2
h∗

56γk (A.18)

H66 = 1

2
gµBH sinθ6 cosφ6 + 1

2
DS

(
1 − 3 cos2 θ6) − 3J⊥S

(
r64 + r56

) − 2J‖Sr36. (A.19)

The matrix elements of (A.3) are

M11 = 1

2
DS sin2 θ1 (A.20)

M12(k) = 3J⊥S
1

2
m12γk (A.21)

M13(k) = 3J⊥S
1

2
m31γ

∗
k (A.22)

M14(k) = 2J‖S
1

2
m14 cos(ckz) (A.23)

M22 = 1

2
DS sin2 θ2 (A.24)

M23(k) = 3J⊥S
1

2
m23γk (A.25)

M25(k) = 2J‖S
1

2
m25 cos(ckz) (A.26)

M33 = 1

2
DS sin2 θ3 (A.27)

M36(k) = 2J‖S
1

2
m36 cos(ckz) (A.28)
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M44 = 1

2
DS sin2 θ4 (A.29)

M45(k) = 3J⊥S
1

2
m45γk (A.30)

M46(k) = 3J⊥S
1

2
m64γ

∗
k (A.31)

M55 = 1

2
DS sin2 θ5 (A.32)

M56(k) = 3J⊥S
1

2
m56γk (A.33)

M66 = 1

2
DS sin2 θ6 (A.34)

where

hss ′ = sinθs sinθs ′ + (1 + cosθs cosθs ′) cos(φs − φs ′) + i (cosθs + cosθs ′) sin(φs − φs ′)

(A.35)

mss ′ = sinθs sinθs ′ − (1 − cosθs cosθs ′) cos(φs − φs ′) − i (cosθs − cosθs ′) sin(φs − φs ′)

(A.36)

rss ′ = sinθs sinθs ′ cos(φs − φs ′) + cosθs cosθs ′ (A.37)

γk = 1

3

[
eiakx + 2e− 1

2 iakx cos

(√
3

2
aky

)]
. (A.38)
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